Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38261629

RESUMO

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

2.
J Allergy Clin Immunol ; 151(4): 931-942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572355

RESUMO

BACKGROUND: Asthma and obesity are both complex conditions characterized by chronic inflammation, and obesity-related severe asthma has been associated with differences in the microbiome. However, whether the airway microbiome and microbiota-immune response relationships differ between obese persons with or without nonsevere asthma is unestablished. OBJECTIVE: We compared the airway microbiome and microbiota-immune mediator relationships between obese and nonobese subjects, with and without mild-moderate asthma. METHODS: We performed cross-sectional analyses of the airway (induced sputum) microbiome and cytokine profiles from blood and sputum using 16S ribosomal RNA gene and internal transcribed spacer region sequencing to profile bacteria and fungi, and multiplex immunoassays. Analysis tools included QIIME 2, linear discriminant analysis effect size (aka LEfSe), Piphillin, and Sparse inverse covariance estimation for ecological association inference (aka SPIEC-EASI). RESULTS: Obesity, irrespective of asthma status, was associated with significant differences in sputum bacterial community structure and composition (unweighted UniFrac permutational analysis of variance, P = .02), including a higher relative abundance of Prevotella, Gemella, and Streptococcus species. Among subjects with asthma, additional differences in sputum bacterial composition and fungal richness were identified between obese and nonobese individuals. Correlation network analyses demonstrated differences between obese and nonobese asthma in relationships between cytokine mediators, and these together with specific airway bacteria involving blood PAI-1, sputum IL-1ß, GM-CSF, IL-8, TNF-α, and several Prevotella species. CONCLUSION: Obesity itself is associated with an altered sputum microbiome, which further differs in those with mild-moderate asthma. The distinct differences in airway microbiota and immune marker relationships in obese asthma suggest potential involvement of airway microbes that may affect mechanisms or outcomes of obese asthma.


Assuntos
Asma , Microbiota , Humanos , Estudos Transversais , Sistema Respiratório/microbiologia , Microbiota/genética , Bactérias , Escarro
3.
mSphere ; 7(6): e0037722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36342141

RESUMO

Inhaled corticosteroids (ICS) are commonly prescribed first-line treatments for asthma and chronic obstructive pulmonary disease (COPD). Recent evidence has shown that ICS use is associated with changes in the airway microbiome, which may impact clinical outcomes such as potential increased risk for pneumonia in COPD. Although the immunomodulatory effects of corticosteroids are well appreciated, whether ICS could directly influence the behavior of respiratory tract bacteria has been unknown. In this pilot study we explored the effects of fluticasone proprionate, a commonly prescribed inhaled corticosteroid, on respiratory bacteria with an expanded focus on Klebsiella pneumoniae, a species previously implicated in fluticasone-associated pneumonia in COPD. We observed significant effects of fluticasone proprionate on growth responses of K. pneumoniae, as well as other bacterial species isolated from asthmatic patients. Fluticasone-exposed K. pneumoniae displayed altered expression of several bacterial genes and reduced the metabolic activity of bronchial epithelial cells and their expression of human ß-defensin 2. Targeted assays identified a fluticasone metabolite from fluticasone-exposed K. pneumoniae cells, suggesting this species may be capable of metabolizing fluticasone proprionate. Collectively, these observations support the hypothesis that specific members of the airway microbiota possess the functional repertoire to respond to or potentially utilize corticosteroids in their microenvironment. These findings lay a foundation for novel research directions into the potential direct effects of ICS, often prescribed long term to patients, on the broader airway microbial community and on the behavior of specific microbial species implicated in asthma and COPD outcomes. IMPORTANCE Inhaled corticosteroids are widely prescribed for many respiratory diseases, including asthma and COPD. While they benefit many patients, corticosteroids can also have negative effects. Some patients do not improve with treatment and even experience adverse side effects. Recent studies have shown that inhaled corticosteroids can change the make-up of bacteria in the human respiratory tract. However, whether these medications can directly impact the behavior of such bacteria has been unknown. Here, we explored the effects of fluticasone propionate, a commonly prescribed inhaled corticosteroid, on Klebsiella pneumoniae and other airway bacteria of interest, including primary species isolated from adult asthma patients. We provide evidence of growth responses to direct fluticasone exposure in culture and further examined fluticasone's effects on K. pneumoniae, including gene expression changes and effects of fluticasone-exposed bacteria on airway cells. These findings indicate that members of the human airway bacterial community possess the functional ability to respond to corticosteroids, which may have implications for the heterogeneity of treatment response observed clinically.


Assuntos
Asma , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Fluticasona/efeitos adversos , Klebsiella pneumoniae , Projetos Piloto , Asma/tratamento farmacológico , Asma/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/microbiologia , Corticosteroides/efeitos adversos
4.
Nat Microbiol ; 7(10): 1503-1504, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36163497
5.
Am J Respir Cell Mol Biol ; 67(2): 155-163, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914321

RESUMO

This report presents the proceedings from a workshop titled "Microbiome, Metabolism and Immunoregulation of Asthma" that was held virtually May 13 and 14, 2021. The workshop was jointly sponsored by the American Thoracic Society (Assembly on Allergy, Immunology, and Inflammation) and the National Institute of Allergy and Infectious Diseases. It convened an interdisciplinary group of experts with backgrounds in asthma immunology, microbiome science, metabolomics, computational biology, and translational pulmonary research. The main purpose was to identify key scientific gaps and needs to further advance research on microbial and metabolic mechanisms that may contribute to variable immune responses and disease heterogeneity in asthma. Discussions were structured around several topics, including 1) immune and microbial mechanisms of asthma pathogenesis in murine models, 2) the role of microbes in pediatric asthma exacerbations, 3) dysregulated metabolic pathways in asthma associated with obesity, 4) metabolism effects on macrophage function in adipose tissue and the lungs, 5) computational approaches to dissect microbiome-metabolite links, and 6) potential confounders of microbiome-disease associations in human studies. This report summarizes the major points of discussion, which included identification of specific knowledge gaps, challenges, and suggested directions for future research. These include questions surrounding mechanisms by which microbiota and metabolites shape host health versus an allergic or asthmatic state; direct and indirect influences of other biological factors, exposures, and comorbidities on these interactions; and ongoing technical and analytical gaps for clinical translation.


Assuntos
Asma , Hipersensibilidade , Microbiota , Animais , Asma/etiologia , Criança , Humanos , Hipersensibilidade/complicações , Imunidade , Camundongos , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos
6.
J Allergy Clin Immunol Pract ; 10(9): 2244-2251, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35724951

RESUMO

The human microbiota has been established as a key regulator of host health, in large part owing to its constant interaction with and impact on host immunity. A range of environmental exposures spanning from the prenatal period through adulthood are known to affect the composition and molecular productivity of microbiomes across mucosal and dermal tissues with short- and long-term consequences for host immune function. Here we review recent findings in the field that provide insights into how microbial-immune interactions promote and sustain immune dysfunction associated with allergy and asthma. We consider both early life microbiome perturbation and the molecular underpinnings of immune dysfunction associated with subsequent allergy and asthma development in childhood, as well as microbiome features that relate to phenotypic attributes of allergy and asthma in older patients with established disease.


Assuntos
Asma , Hipersensibilidade , Microbiota , Adulto , Idoso , Exposição Ambiental/efeitos adversos , Humanos
8.
mSystems ; 6(5): e0115121, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636663

RESUMO

This article proposes ways to improve inclusion and training in microbiome science and advocates for resource expansion to improve scientific capacity across institutions and countries. Specifically, we urge mentors, collaborators, and decision-makers to commit to inclusive and accessible research and training that improves the quality of microbiome science and begins to rectify long-standing inequities imposed by wealth disparities and racism that stall scientific progress.

9.
mSystems ; 6(4): e0047121, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34313460

RESUMO

Humans are inextricably linked to each other and our natural world, and microorganisms lie at the nexus of those interactions. Microorganisms form genetically flexible, taxonomically diverse, and biochemically rich communities, i.e., microbiomes that are integral to the health and development of macroorganisms, societies, and ecosystems. Yet engagement with beneficial microbiomes is dictated by access to public resources, such as nutritious food, clean water and air, safe shelter, social interactions, and effective medicine. In this way, microbiomes have sociopolitical contexts that must be considered. The Microbes and Social Equity (MSE) Working Group connects microbiology with social equity research, education, policy, and practice to understand the interplay of microorganisms, individuals, societies, and ecosystems. Here, we outline opportunities for integrating microbiology and social equity work through broadening education and training; diversifying research topics, methods, and perspectives; and advocating for evidence-based public policy that supports sustainable, equitable, and microbial wealth for all.

11.
mSphere ; 5(5)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33025908

RESUMO

Ariangela J. Kozik studies the respiratory microbiome as it relates to asthma. In this mSphere of Influence article, she reflects on how two papers, "Time's up to adopt a biopsychosocial model to address racial and ethnic disparities in asthma outcomes" (E. C. Matsui, A. S. Adamson, and R. D. Peng, Allergy Clin Immunol 143:2024-2025, 2019, https://doi.org/10.1016/j.jaci.2019.03.015) and "Health disparities and the microbiome" (K. Findley, D. R. Williams, E. A. Grice, and V. L. Bonham, Trends Microbiol 24:847-850, 2016, https://doi.org/10.1016/j.tim.2016.08.001), shape her approach to human microbiome research.


Assuntos
Microbiota , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA